

2. Customising ESP-AT Firmware

In the previous tutorial, we saw how to build and flash ESP-AT, but we didn't look at what configuration options were available. In this tutorial we will learn how to configure the ESP-AT firmware in order to use the UART-0 interface for both info logging and AT commands.

For this tutorial you'll need:

Introduction #

All the ESP* modules come with the default AT firmware installed, but this firmware sends logs to the UART-0 interface (on our board, this is connected to the USB port throught the USB/UART bridge), and expects the commands to be sent to the UART-1 interface:

To use the UART-0 interface for both logs and commands, thus not requiring any additional USB/UART bridge, we must alter the configuration of the ESP-AT firmware. Recompiling the AT firmware is useful for other purposes too, for instance the SPP protocol of classic BT is not enabled by default, and can be enabled with a few configuration changes.

Updating Configuration with menuconfig #

First let's check to see if the UART-0 interface is set as default console output port, so first head to the location you downloaded the ESP-AT source and open the menuconfig tool: cd ~/esp-at

./build.py menuconfig

Go to Component config > Common ESP-related and you should see UART for console output set to: Default: UART0, TX=GPI01, RX=GPI03

Note that this is the console **output** port, it is not the **command** port, the configuration for the command port is not in the menuconfig, but it is in a configuration file:

gedit components/customized_partitions/raw_data/factory_param/factory_param_data.csv &

This file lists all the modules and the default GPIOs and parameters for the AT firmware. Since we're using the ESP32-WROOM-32*, we'll need to update line 2:

Open			<pre>*factory_param_data.csv ~/esp/esp-at/components/customized_partitions/raw_data/factory_param</pre>	Save			• 😣
1 platfo	۰rm,	modul	e_name,description,magic_flag,version,module_id,tx_max_pov	wer,uart	t_port	t,sta	rt_chann
2 PLATEC	RM_	ESP32	,WROOM-32,,0xfcfc,2,1,78,0,1,13,CN,115200,1,3,-1,-1,-1,-1				
3 PLATEC	RM_	ESP32	WROVER-32,,0xfcfc,2,2,78,1,1,13,CN,115200,22,19,15,14,-1,	,-1			
4 PLATFO	RM_	ESP32	,PICO-D4,,0xfcfc,2,3,78,1,1,13,CN,115200,22,19,15,14,-1,-1	1			
5 PLATFO	RM_	ESP32	,SOLO-1,,0xfcfc,2,4,78,1,1,13,CN,115200,17,16,15,14,-1,-1				
6 PLATFO	RM_	ESP32	,MINI-1, "ESP32-U4WDH chip inside", 0xfcfc, 2, 5, 78, 1, 1, 13, CN,	,115200,	,22,19	9,15,3	14,-1,-1
7 PLATEC	RM_	ESP32	,ESP32-D2WD, "2MB flash, No OTA", 0xfcfc, 2, 6, 78, 1, 1, 13, CN, 11	15200,22	2,19,1	15,14	,-1,-1
8 PLATEC	RM	ESP82	56, WROOM-02, TX:15 RX:13, 0xfcfc, 2, 0, 78, 0, 1, 13, CN, 115200, 15,	,13,3,1,	,-1,-1	L	
9PLATFORM_ESP8266,WR00M-5V2L,5V UART level,0xfcfc,2,1,78,0,1,13,CN,115200,15,13,3,1,5,-1							
0 PLATFO	RM_	ESP82	56,ESP8266_1MB,No OTA,0xfcfc,2,2,78,0,1,13,CN,115200,15,13	3,3,1,-1	1,-1		
1 PLATFO	RM	ESP82	56, WROOM-02-N, TX:1 RX:3, 0xfcfc, 2, 3, 78, 0, 1, 13, CN, 115200, 1, 3	3,-1,-1,	-1,-1	L	
2 PLATEC	RM	ESP82	56,WROOM-S2,,0xfcfc,2,4,78,0,1,13,CN,115200,15,13,3,1,-1,.	-1			
3 PLATEC	RM	ESP32	S2,WROOM,, 0xfcfc, 2, 0, 78, 1, 1, 13, CN, 115200, 17, 21, 20, 19, -1, -1	1			
4 PLATEC	RM	ESP32	S2,WROVER,,0xfcfc,2,1,78,1,1,13,CN,115200,17,21,20,19,-1,.	-1			
5 PLATEC	RM_	ESP32	52, SOLO,, 0xfcfc, 2, 2, 78, 1, 1, 13, CN, 115200, 17, 21, 20, 19, -1, -1				
6 PLATFO	RM_	ESP32	<pre>S2,MINI,,0xfcfc,2,3,78,1,1,13,CN,115200,17,21,20,19,-1,-1</pre>				

With this row we replace the UART (command) port to UART-0, the TX pin to 1 and RX to 3, these are the GPIOs linked to the USB/UART bridge on the ESP32-DEVKIT-C:

PLATFORM_ESP32,WROOM-32,,0xfcfc,2,1,78,0,1,13,CN,115200,1,3,-1,-1,-1

Build & Flash

We are now ready to build and flash the modified firmware: ./build.py flash

As in the last tutorial, if you get a SerialException:

you'll need to add the current user to the group dialout and restart the system: sudo adduser \$USER dialout sudo reboot

AT command test

To test the firmware we have just flashed, open up a serial terminal -I am going to use GTKTerm, which can be found and installed from the software center.

ESP-AT expects CR LF as new line so we must set *Configuration->CR LF auto*. Then open *Configuration->Port* and set the serial port configuration to: Baud Rate: 115200

Parity: none Bits: 8 Stopbits: 1 Flow control: none

		Configuratio	on		8		
erial port							
Port:		Baud Rate	2	Par	ity:		
/dev/ttyUSB0	•	115200	•	none	•		
Bits:		Stopbits:		Flow control:			
8	-	1	-	none	-		
8 Advanced Configural		1 Drns	•	none			
,				ОК	Cancel		

If everything was configured correctly, we should see the log output (since the UART-0 interface is still the log port), and once the module has initialised we should see *ready* outputted. You can now give the command at, which is a test command, and input the CR LF – this is achieved in GTKTerm by pressing both *ENTER* and *CTRL-J*:

GTKTerm - /dev/ttyUSB0 115200-8-N-1	-		8
File Edit Log Configuration Control signals View Help			
I (106) boot: 5 ota_1 OTA app 00 11 00280000	001	800	00
I (114) boot: End of partition table I (118) boot comm: chip revision: 1, min, application chip revisio	on :		
I (125) esp image: segment 0: paddr=0x00100020 vaddr=0x3f400020 s.	ize=	0x2	b3
a8 (177064) map			
I (198) esp_image: segment 1: paddr=0x0012b3d0 vaddr=0x3ffbdb60 s.	ize=		39
d0 (14800) load			
I (204) esp_image: segment 2: paddr=0x0012eda8 vaddr=0x40080000 s:	ize=		004
00 (1024) load T (205) oon imagaa cogmont 2, naddr-0y0012flb0 yaddr-0y40000400 c			
1 (205) esp_image: segment 5: pauli=0x00121100 vauli=0x40000400 s.	IZe=		100
I (215) esp image: segment 4: paddr=0x00130018 vaddr=0x400d0018 s	ize=	0x1	1f
008 (1175560) map			
I (643) esp_image: segment 5: paddr=0x0024f028 vaddr=0x40081260 s.	ize=	0x1	.b8
a0 (112800) load			
I (690) esp_image: segment 6: paddr=0x0026a8d0 vaddr=0x400c0000 s.	ize=	0x0	00
64 (100) load			
I (708) boot: Loaded app from partition at offset 0x100000			
I (708) DOOT: DISADIING RNG early entropy source			
ready			
at			
OK			

/dev/ttyUSB0 115200-8-N-1

DTR RTS CTS CD DSR RI

The firmware should reply OK and thus our firmware has been correctly configured.

Conclusion #

We configured and compiled the ESP-AT firmware to change the command output from the default UART-1 interface to the UART-0 interface, which is connected to the usb port in the ESP32-DEVKIT-C and we sent our first command and checked that everything works correctly. We are now ready to use the AT firmware for both WiFi and BLE application.