
Distribution with a Differenceinfo@ineltek.co.uk · www.ineltek.co.uk
INELTEK Ltd · 1 Mill Street · Leamington Spa · CV31 1ES

In the previous tutorial, we saw how to build and flash ESP-AT, but we didn’t look at what configuration options were available. In this tutorial we will
learn how to configure the ESP-AT firmware in order to use the UART-0 interface for both info logging and AT commands.

For this tutorial you’ll need:

Introduction #
All the ESP* modules come with the default AT firmware installed, but this firmware sends logs to the UART-0 interface (on our board, this is connected
to the USB port throught the USB/UART bridge), and expects the commands to be sent to the UART-1 interface:

To use the UART-0 interface for both logs and commands, thus not requiring any additional USB/UART bridge, we must alter the configuration of the
ESP-AT firmware. Recompiling the AT firmware is useful for other purposes too, for instance the SPP protocol of classic BT is not enabled by default, and
can be enabled with a few configuration changes.

Updating Configuration with menuconfig #
First let’s check to see if the UART-0 interface is set as default console output port, so first head to the location you downloaded the ESP-AT source and
open the menuconfig tool:
cd ~/esp-at
./build.py menuconfig

Go to Component config > Common ESP-related and you should see UART for console output set to:
Default: UART0, TX=GPIO1, RX=GPIO3

2. Customising ESP-AT Firmware

https://www.ineltek.co.uk/docs/espressif

Distribution with a Differenceinfo@ineltek.co.uk · www.ineltek.co.uk
INELTEK Ltd · 1 Mill Street · Leamington Spa · CV31 1ES

Note that this is the console output port, it is not the command port, the configuration for the command port is not in the menuconfig, but it is in a
configuration file:
gedit components/customized_partitions/raw_data/factory_param/factory_param_data.csv &

This file lists all the modules and the default GPIOs and parameters for the AT firmware. Since we’re using the ESP32-WROOM-32*, we’ll need to update
line 2:

With this row we replace the UART (command) port to UART-0, the TX pin to 1 and RX to 3, these are the GPIOs linked to the USB/UART bridge on the
ESP32-DEVKIT-C:
PLATFORM_ESP32,WROOM-32,,0xfcfc,2,1,78,0,1,13,CN,115200,1,3,-1,-1,-1,-1

Build & Flash #

We are now ready to build and flash the modified firmware:
./build.py flash

As in the last tutorial, if you get a SerialException:

you’ll need to add the current user to the group dialout and restart the system:
sudo adduser $USER dialout
sudo reboot

AT command test #
To test the firmware we have just flashed, open up a serial terminal – I am going to use GTKTerm, which can be found and installed from the software
center.

ESP-AT expects CR LF as new line so we must set Configuration->CR LF auto. Then open Configuration->Port and set the serial port configuration to:
Baud Rate: 115200
Parity: none
Bits: 8
Stopbits: 1
Flow control: none

https://www.ineltek.co.uk/docs/espressif

Distribution with a Differenceinfo@ineltek.co.uk · www.ineltek.co.uk
INELTEK Ltd · 1 Mill Street · Leamington Spa · CV31 1ES

The firmware should reply OK and thus our firmware has been correctly configured.

Conclusion #
We configured and compiled the ESP-AT firmware to change the command output from the default UART-1 interface to the UART-0 interface, which is
connected to the usb port in the ESP32-DEVKIT-C and we sent our first command and checked that everything works correctly. We are now ready to use
the AT firmware for both WiFi and BLE application.

If everything was configured correctly, we should see the log output (since the UART-0 interface is still the log port), and once the module has initialised
we should see ready outputted. You can now give the command at, which is a test command, and input the CR LF – this is achieved in GTKTerm by
pressing both ENTER and CTRL-J:

