2. Customising ESP-AT Firmware
\

\

@
b@ VP <

In the previous tutorial, we saw how to build and flash ESP-AT, but we didn’t look at what configuration options were available. In this tutorial we will
learn how to configure the ESP-AT firmware in order to use the UART-0 interface for both info logging and AT commands.

For this tutorial you’ll need:

Introduction #

All the ESP* modules come with the default AT firmware installed, but this firmware sends logs to the UART-0 interface (on our board, this is connected
to the USB port throught the USB/UART bridge), and expects the commands to be sent to the UART-1 interface:

USB/UART Bridge

To use the UART-0 interface for both logs and commands, thus not requiring any additional USB/UART bridge, we must alter the configuration of the
ESP-AT firmware. Recompiling the AT firmware is useful for other purposes too, for instance the SPP protocol of classic BT is not enabled by default, and
can be enabled with a few configuration changes.

Updating Configuration with menuconfig #

First let’s check to see if the UART-0 interface is set as default console output port, so first head to the location you downloaded the ESP-AT source and
open the menuconfig tool:

cd ~/esp-at

./build.py menuconfig

Go to Component config > Common ESP-related and you should see UART for console output set to:
Default: UART@, TX=GPIO1l, RX=GPIO3

INELTEK Ltd - 1 Mill Street - Leamington Spa - CV31 1ES

info@ineltek.co.uk - www.ineltek.co.uk

https://www.ineltek.co.uk/docs/espressif

Common ESP-related
Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty
submenus ----). Highlighted letters are hotkeys. Pressing <Y>
includes, <N> excludes, <M> modularizes features. Press <Esc><Esc> to
exit, <?> for Help, </> for Search. Legend: [*] built-in []
T('I
(1024) Inter-Processor Call (IPC) task stack size
3584) High-resolution timer task stack size
i
(115200) UART console baud rate
[*] Interrupt watchdog
(300) Interrupt watchdog timeout (ms)
[*] Initialize Task wWatchdog Timer on startup
[1] Invoke panic handler on Task Watchdog timeout
(5) Task Watchdog timeout period (seconds)
[*] Watch cPue Idle Task

< Exit > < Help > < Save > < Load >

Note that this is the console output port, it is not the command port, the configuration for the command port is not in the menuconfig, but it is in a

configuration file:
gedit components/customized_partitions/raw_data/factory_param/factory_param_data.csv &

This file lists all the modules and the default GPIOs and parameters for the AT firmware. Since we’re using the ESP32-WROOM-32*, we’ll need to update
line 2:

== *factory_param_data.csv — 1-

1platform,module name,description,magic_flag,version,module id,tx max power,uart_port,start_chann

3PLATFORM_ESP32,WROVER-32, ,0xfcfc,2,2,78,1,1,13,CN, ,22,19,15,14,-1,-

4 PLATFORM_ESP32,PICO-D4, ,0xfcfc,2,3,78,1,1,13,CN, p 22, 15,15,14,-1,-

5 PLATFORM_ESP32,50L0-1, ,6xfcfc,2,4,78,1,1,13,CN, 217, 00,15,04,-1,-

6 PLATFORM_ESP32,MINI-1, ,oxfcfc,2,5,78,1,1,13,CN, »22,19,15,14,-1,-
7PLATFORM_ESP32,ESP32-D2WD, ,0xfcfc,2,6,78,1,1,13,CN, »19, =1,
8 PLATFORM_ESP8266,WRO0M-02, TX: RX:13,0xfcfc,2,0,78,0,1,13,CN, 215,13,3,1,-1,-

9 PLATFORM_ESP8266,WROOM-5V2L,5V UART level,exfcfc,2,1,78,0,1,13,CN, »15,13,3,1,5,-
10 PLATFORM_ESP8266,ESP8266_1MB,No OTA,0xfcfc,2,2,78,0,1,13,CN, 515,13,3,1,-1,-
11 PLATFORM_ESP8266 ,WROOM-02-N,TX:1 RX:3,0xfcfc,2,3,78,0,1,13,CN, »1,3,-1,-1,-
12 PLATFORM_ESP8266,WRO0M-S2, ,exfcfc,2,4,78,0,1,13,CN, ,15,13,3,1,-1,-
13 PLATFORM_ESP32S2,WR00M, ,0xfcfc,2,0,78,1,1,13,CN, »17,21,20,19,-1,-
14 PLATFORM_ESP3252 ,WROVER, ,0xfcfc,2,1,78,1,1,13,CN,11 ,17,21, 1
15 PLATFORM_ESP3252,50L0, ,exfcfc,2,2,78,1,1,13,CN, »17, 219,71,
16 PLATFORM_ESP3252,MINI, ,exfcfc,2,3, ,1,13,CN, ,17,21,20,19,-1,-

With this row we replace the UART (command) port to UART-0, the TX pin to 1 and RX to 3, these are the GPIOs linked to the USB/UART bridge on the

ESP32-DEVKIT-C:
PLATFORM_ESP32,WROOM-32, ,0xfcfc,2,1,78,0,1,13,CN,115200,1,3,-1,-1,-1,-1

Build & Flash #

We are now ready to build and flash the modified firmware:
./build.py flash

As in the last tutorial, if you get a SerialException:

you’ll need to add the current user to the group dialout and restart the system:
sudo adduser $USER dialout
sudo reboot

AT command test #

To test the firmware we have just flashed, open up a serial terminal — I am going to use GTK Term, which can be found and installed from the software
center.

ESP-AT expects CR LF as new line so we must set Configuration->CR LF auto. Then open Configuration->Port and set the serial port configuration to:
Baud Rate: 115200

Parity: none

Bits: 8

Stopbits: 1

Flow control: none

Configuration x

Serial port
Port: Baud Rate: Parity:
B0 - 115200 v none v
Bits: Stopbits: Flow control:
8 - 1 - none v

} Advanced ConFiguration Options
OK Cancel

INELTEK Ltd - 1 Mill Street - Leamington Spa - CV31 1ES

info@ineltek.co.uk - www.ineltek.co.uk

https://www.ineltek.co.uk/docs/espressif

If everything was configured correctly, we should see the log output (since the UART-0 interface is still the log port), and once the module has initialised
we should see ready outputted. You can now give the command at, which is a test command, and input the CR LF — this is achieved in GTK Term by
pressing both ENTER and CTRL-J:

GTKTerm - /dev/ttyUSBO 115200-8-N-1

File Edit Log Configuration Controlsignals View Help

/dev/ttyUSBO 115200-8-N-1 DTR RTS

The firmware should reply OK and thus our firmware has been correctly configured.

Conclusion #

We configured and compiled the ESP-AT firmware to change the command output from the default UART-1 interface to the UART-0 interface, which is
connected to the usb port in the ESP32-DEVKIT-C and we sent our first command and checked that everything works correctly. We are now ready to use
the AT firmware for both WiFi and BLE application.

INELTEK Ltd - 1 Mill Street - Leamington Spa - CV31 1ES

info@ineltek.co.uk - www.ineltek.co.uk

